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We derive asymptotic properties of the propagator p(r, t) of a continuous-time 
random walk (CTRW) in which the waiting time density has the asymptotic 
form ~k(t) ~ T~/t ~ + l when t ~> T and 0 < e < 1. Several cases are considered; the 
main ones are those that assume that the variance of the displacement in a 
single step of the walk is finite. Under this assumption we consider both random 
wall~ with and without a bias. The principal results of our analysis is that one 
needs two forms to characterize p(r, t), depending on whether r is large or small, 
and that the small-r expansion cannot be characterized by a scaling form, 
although it is possible to find such a form for large r. Several results can be 
demonstrated that contrast with the case in which < t ) = S ~  r~p(r)& is finite. 
One is that the asymptotic behavior of p(0, t) is dominated by the waiting time 
at the origin rather than by the dimension. The second difference is that in the 
presence of a field p(r, t) no longer remains symmetric around a moving peak. 
Rather, it is shown that the peak of this probability always occurs at r = 0, and 
the effect of the field is to break the symmetry that occurs when {t> < w. 
Finally, we calculate similar properties, although in not such great detail, for the 
case in which the single-step jump probabilities themselves have an infinite 
mean. 

KEY W O R D S :  Random walks; disordered media; transport properties. 

1. I N T R O D U C T I O N  

Approximations based on the continuous-time random walk (1) (CTRW) 
have been used in a number of investigations of transport properties in dis- 
ordered systems, particularly those that can be posed in terms of hopping 
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models. These arise in a natural way in the context of solid state 
physics (2-1~ as well as in the analysis of chromatographic systems, (~'12~ 
which are particular examples of a number of subjects of current interest in 
the general area of transport in disordered media. The CTRW is a random 
walk on a lattice in which the times between successive steps are assumed 
to be independent, identically distributed random variables. In order to 
describe transport properties of a CTRW on an infinite lattice, one requires 
a knowledge of the probability of being at site r at time t. This probability 
will be denoted by p(r, t). Generally, one is mainly interested in the long- 
time limit ofp(r,  t) because it is only in that limit that one can hope to find 
limiting laws independent of the detailed structure of the random walk. For 
example, it is known that when the times between successive steps have a 
finite average and the variance of each (random) displacement is finite the 
analytical form of p(r, t) tends toward a limiting Gaussian form as a func- 
tion of r at sufficiently long times. In the present paper we will consider 
only the case of separable CTRWs; that is, CTRWs in which the displace- 
ment in a given step of the random walk and the time between successive 
steps are independent random variables. That is, if p(r, t) dt is the joint 
probability that a given step of the random walk is equal to r and the 
probability that the following step occurs after an interval of between t and 
t + dt units of time, this function can be decomposed in the form 

p(r, t) = p(r) ~(t) (1) 

In the present paper we will be interested in finding the asymptotic 
behavior of p(r, t) for large t, when O(t) has a long-time tail in the sense 
that 

O(t) ~ T~l t  ~+~ (2) 

for t ~> T, where T is a constant with the dimensions of time. It is known 
that p(r, t) will not have a limiting Gaussian form when O(t) has the 
property given in Eq. (2). Tunaley (13~ and Shlesinger et al. ~14) have both 
found formal expressions for the Fourier-Laplace transform (with respect 
to time) ofp(r,  t) but were not able to provide a useful, explicit, inversion 
of the formula for that function. Ball et al. ~5~ discussed the problem that is 
the subject of the present paper, evaluating the inversion integral by the 
method of steepest descents/16) However, their analysis was partially in 
error, so that while they found the correct exponential behavior of p(r, t) 
for the unbiased random walk, the prefactor of the exponential is in error. 
Furthermore, the range of validity under which the approximation is 
expected to be a useful one is not defined. 

We present the results of an analysis of the problem for four different 
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cases. The two most important cases, ones for which we provide the most 
complete results, require that the second moments of the displacement in 
a single step remain finite. If we use the decomposition shown in Eq. (1), 
this is equivalent to the assumption that 

( ~  r Z p ( r , t ) d O r < o G  i =  1, 2,..., D (3) 

where D is the number of dimensions. We will show that when the bias, or, 
equivalently, the average displacement per step is equal to zero, one needs 
two separate approximations for p(r, t), one valid in the neighborhood of 
r = 0, and the second valid for large values of r2=  r - r .  The large-r result, 
as will be seen, is found by the method of steepest descents. The final two 
cases to be considered are those in which the displacement probabilities as 
well as the O(t) are asymptotically equivalent to a stable law. 

2. A P P R O X I M A T I O N  FOR F I N I T E - V A R I A N C E  R A N D O M  
W A L K S  

2.1. Symmet r ic  Random Walks  

In the analysis to follow we denote the Laplace transform of a function 
of time, e.g., f ( t ) ,  by the same function with a caret and an argument s, so 
that, for example, 2 ~ { f ( t ) } = f ( s ) .  Equat ion(2)  is equivalent, in the 
Laplace transform domain, to the result that ~(s) can be approximated by 
~(s )  ~ 1 - ( sT)  ~ for ~ < 1 and s ~ 0. Without loss of generality we can set 
T =  1, in which case the time t will be expressed in terms of dimensionless 
units r defined by r = tiT. We will also make a slightly stronger assumption 
on the form of ~(s) purely for the sake of mathematical convenience. 
Specifically, we will assume that ~(s) is 

~(s )  = 1/(s ~ + l ) (4) 

which is the transform of a legitimate probability density and clearly 
retains the desired limiting form as s ~ 0. Properties of the lattice random 
walk will be reflected in terms of analytical properties of the structure 
function 2(0), which is defined in terms of the single-step transition 
probabilities p(j) as 

2(0) = Y' p(j) exp(ij �9 0) (5) 
J 
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When the second moments of displacement are finite, the structure function 
can be expanded in a neighborhood of 0 = 0 as 

O " V . O  
2(0) ~ 1 + ila" 0 2 (6) 

where la is a vector whose j t h  component is the average displacement in a 
single step along coordinate j, and V is the variance-covariance matrix. To 
further simplify our analysis, we consider only the specific case 

V = v I  (7) 

where v is the second moment of displacement, common to all coordinates, 
and I is the unit matrix. When the random walk is symmetric, the trans- 
ition probability for a single step satisfies la = 0 and the variance is v = a 2. 
It is also possible to analyze problems posed by variance-covariance 
matrices more general than that given in Eq. (7), but the interesting 
qualitative features of the analysis are all included in the simpler special 
case of Eq. (7). 

The starting point for our analysis is the exact representation of/~(r, s) 
for a random walker initially at the origin: 

1 - ~ ( s )  ~ . f~ exp(-- i r-O) dD 0 
/~( r , s ) :  s ~ -  f _ . ' "  _ . l - - ~ ( s )  2(O) 

s ~-1 f -  f -  exp(ir.  O) 
- ( -~u)  7~ _=""  _= s~ + 1 - 2 ( 0 )  dDO (8) 

in which we have made use of the definition given in Eq. (4). We will derive 
an expansion for p(r, z) in a neighborhood of the origin for large 7, but it 
is instructive to first consider the form taken by p(0, z) in the large-time 
limit. Three cases must be considered separately, D = 1, D = 2, and D/> 3. 
In the first two of these, setting s = 0 in the integrand leads to a formal 
divergence due to the singularity at the origin in 0 space. Consider first 
D = 1. Since, when s is set equal to 0 the divergence of the integral comes 
from the singularity of the integrand at 0 = 0, we need only approximate 
the integrand carefully in the neighborhood of the origin by writing 

s ~ + 1 - 2(0) ~ s ~ + a202/2 (9) 

When the limits of integration on 0 are extended to + oc, the resulting 
integral converges for s :/= 0, but the contribution to the integral from values 
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of 0 2 greater than 717 2 is negligible in comparison with the contribution from 
the interval (-~z 2, ~z2). Hence we may approximate to/~(0, s) by 

S~.- 1 ~oo 1 SW2- t 

f i (0 ,  S) ~ ~ j _  oo S ~ n t- G 2 0 2 / 2  dO = - - ~  x//~ 

which is equivalent to the asymptotic estimate 

p(0, z')~ [o'21/2F(1 - -a /2 ) r  ~/2 ] -1, r-+ c~ 

A similar calculation for D = 2 leads to the result 

(10) 

(11) 

F(1 + ~) sin(=c~) In 
p(0, "t')~ 21r2o. 2 z "~ (12) 

When s is set equal to 0 in the last line of Eq. (8) the resulting integrals 
converge when D >~ 3, which implies the result 

p(O, "r) ~ KD'r -er 

where K D is the constant 

KD-- (2=) v F(1--~)  _= 

(13) 

~ dDO 
I (14) 

"J_~ 1 -~(o) 

The asymptotic form for p(0, r) is interesting because it indicates that for 
D >~ 3 the rate-limiting step in determining p(0, ~) is the time taken by the 
random walker to first leave the origin. This should be contrasted to the 
behavior of CTRWs in which the mean time between successive steps of 
the random walk is finite, when p(0, ~) is asymptotically proportional to 
r -~D/2, except in D = 2  dimensions in which case a logarithm appears. 
When the average waiting time between steps is finite in dimensions >~3 
the nman time spent by the random walker in all visits to the origin is 
finite. However, when the mean time between successive steps is infinite this 
can never be the case, since the average time spent at the origin during the 
initial sojourn at that point is necessarily infinite. 

Let us next consider the nature of the remaining terms in the expan- 
sion ofp(r, r) around the origin. These can be found by expanding the term 
exp(ir-0) in a Taylor series. The result of such an expansion follows 
closely the one for the one-dimensional case, hence we consider that case 
alone. A formal expansion of the exponential allows us to write 

1 3 ( x , s ) ~  f'~ 1-x202/2 + x404/24 . . . .  
s~+l_;t(O) dO (15) 
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We have already examined the behavior of the lowest order term, finding 
the result given in Eq. (11). A calculation of the coefficient of x 2 requires 
that we evaluate the integral 

1 f~ 02 
I2(s)=~-~ - ,  s~ + 1 -2 (0 )dO (16) 

which converges when s = 0 since the 0 2 in the numerator just cancels the 
singularity in the denominator. Hence the asymptotic expansion of p(x, z) 
in the neighborhood of x = 0 is 

1 (x2 x4 ) 
p(x, v)~ p(O, z ) - / ' ( 1  -~)  v= 1 2 " ~ - - I 4 " ~  + "'" (17) 

in which the integrals I2n are the integrals 

1 ~ v; 02n 

12n = 2-~ J_ ~ 1 - - ~ 0 )  dO (18) 

We note that Eq. (17) is a lowest order approximation in the sense that it 
is calculated from 12(0). Further contributions from the s dependence of 
I2(s) lead to lower order terms in r which are not taken into account in the 
expansion shown in Eq. (17). The important feature of the expression given 
in Eq. (17) is the absence of scaling for small x, i.e., in the bracketed terms. 
The calculation in D = 2 dimensions leads to an expansion analogous to 
that given in Eq. (17) except that the Izn of Eq. (18) are replaced by double 
integrals. One can carry out a similar calculation in three or more dimen- 
sions, finding that in the small-r, large-z regime p(r, r) can be factorized, to 
lowest order, in the form 

p(r, z )~p(0 ,  z ) f ( r )  (19) 

where f ( r )  is a power series whose coefficients are found in terms of 
D-dimensional analogues of the integrals in Eq. (18). Again we see that 
scaling relations cannot be valid in the small-r regime. 

Let us next calculate the large-r approximation to p(r, r). We will 
express space coordinates in terms of the dimensionless distance p = r/a. 
The starting point of the analysis is the expression for/~(p, s) calculated 
following ref. 15: 

p(p, S)~-(21/2/))1 D/2 S(~/2)(1+D/2) 
KI _ D/2(2 l/2pj/2 ) 

7"gD/2r (20) 

where KI D/2(X) is a Bessel function of the second kind of imaginary order. 
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We will be interested in the behavior of this function for large p, which 
allows us to use the asymptotic form of the Bessel function to find 

[ p ( 2 7 z ) l / 2 ] ( 1 / 2 ) ( l  - D) 

fi(fl, S) GD21/2 S (=/4)(1 + O)-- ~ exp( --2 l/2flSC~/2) (21) 

This expression is to be substituted into the inversion integral for the 
Laplace transform 

if p(p,  T) = ~ /  p(p,  s) e ~* a's (22) 

where the integration is to be performed along a line parallel to the 
imaginary axis and to the right of all of the singularities of the integrand. 
Before proceeding to an asymptotic evaluation of this integral using the 
method of steepest descents, it is useful to change the variable of integra- 
tion from s to v by the transformation 

3 = ( 2 ' / 2 p / ' c ) 2 / ( 2 - a ) V  (23) 

in which case the inversion integral for p(p, ~) is expressed as 

B (p~ D(a ~))~/(2-~) 
p(p,v)=~-~i\ z~(,+m/2 ] fv  (~/4)(1+~ ~exp[t'2(v-v~/2)]dv (24) 

where B is a constant which cancels out of our later calculations, and f2 is 
the dimensionless combination of parameters 

n = ( 2 p 2 / r ~ )  1/(2 ~) (25) 

We will apply the method of steepest descents to evaluate the integral in 
Eq. (24) when s >> 1 or, equivalently, when 

p > "C~/2/2 (26) 

which, accordingly, defines the large-p regime. The principal contribution 
to the integral comes from the neighborhood of the extremum of the 
exponent in Eq. (24), which occurs at v = Vo, where 

7o = (~/2) 2/(2- ~ (27) 

Let Papp(P, l:) be the approximate value of the probability distribution 
obtained from thesteepest  descent calculation. We shall follow Daniels (~6/ 
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in adopting as our final approximation not  Papp(P, "C), but rather its nor- 
malized version in D dimensions: 

q(p, "C) = pD 'Papp(P, 7:) pO lpapp(p ' "C) dp (28) 

The normalization step causes the constant in Eq. (24), B/(2~), to drop out 
of the expression for q(p, ~). If we define the constant Wo by the relation 

Wo = @;/2 _ Vo ) 21/(2-~) (29) 

then q(p, r) takes the form 

wg/2po/(2-~) 1 { p2/(2- ~)) 
q(p, r) = (2 - e) F(D/2) zz)~/E2(2-~)l exp - w0 ~-;Tg-;~j ~ (30) 

Higher order corrections can be calculated using the expansion given by 
Daniels. (16) We see that in the regime being analyzed the exponential term 
does have a scaling form in terms of the parameter p2/r~. 

2.2. Biased Random Walks 

In this subsection we retain the assumpti\on that the spatial variance 
of the random walk is finite, but now assume that the random walk is sub- 
jected to a bias which we quantify by requiring that the average displace- 
ment in a single step be equal to # with # = (11" !1) ~/2. In this situation there 
are two factors influencing the asymptotic form of the probability distribu- 
tion of the end-to-end vector of the random walk. The first of these is 
expressed in terms of asymmetric transition probabilities that cause the 
random walker to prefer motion in a particular direction, and the second 
is the long-time tail assumed for qJ(r), which tends to keep the random 
walker in place at a single site for long periods of time. In contrast to the 
more familiar case in which the average time between successive steps is 
finite, we will see that the asymptotic form of p(r, t) is not a symmetric 
function of bias-adjusted distance r -  #t. 

As in the case of the unbiased random walk, we consider first the 
problem of finding the asymptotic behavior of p(0, r). We will show that in 
the presence of biased transition probabilities the function p(0, 7:) has the 
same asymptotic time dependence in any number of dimensions up to a 
muttiplicative constant. Let us, for example, analyze the small-s behavior of 
the one-dimensional /~(0, s) from Eq. (8). To do so, we exponentiate the 
denominator of the integrand by using the representation u ~= 
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~ exp ( -u{ )  dr followed by an interchange of the orders of integration. 
This allows us to express/~(0, s) in the form of a Laplace transform as 

SO~ 1 fo fn /~(0, s)=~ff-n e ~r d~ e-r dO (31) 

Only the limit s--, 0 interests us. In this regime, by using an Abelian 
theorem for Laplace transforms, 117) we can conclude that the only signifi- 
cant contribution to the integral over ~ can come from the limit ~ -~ oo. In 
the same limit the major contribution in the integral over 0 comes from the 
neighborhood of 0 = 0, where now we may approximate 1 - 2 ( 0 )  by i#O. 
The resulting integral can be evaluated in closed form, which yields 

Sz~- 1 ~,-~ s i n ( r  s ~ 1 
e - ' ~  - - d ~  (32) ~(o, s) ~ ~# Jo ~ 2# 

The equivalent asymptotic result in the time domain is 

p(0, z ) ~ [ 2 # F ( 1 - ~ ) ]  l r  ~ (33) 

at sufficiently large z. A similar calculation suffices to establish that in any 
number of dimensions 

]9(0, S) ~ KD S~ 1 ( 3 4 )  

where KD is a constant that depends on the dimension D and the bias #. 
The result of this last equation implies that p(0, t) at long times is 

KD 
p(0, r) - - r - "  (35) 

v(1 -~ )  

That the asymptotic time dependence of p(0, z) should be independent of 
dimension is intuitively plausible. The bias transforms the model into an 
essentially one-dimensional one, independent of the dimension of the 
underlying space. When D = 1 one finds the intuitively plausible result that 
the probability that the random walker is found at the origin at time r, 
p(0, ~), goes to zero more quickly than does the corresponding result for 
the isotropic random walk, since the latter probability falls off as r ~/2 at 
large times. This change in the power of z in p(0, ~) is the only significant 
effect of the long-time tail form chosen for tp(t). Even when we raise the 
number of dimensions, the order of the exponent appearing in p(0, r) does 
not increase as it does for the isotropic random walk, because the biasing 
field tends to deny the random walker access to sites not lying along the 
axis established by the field. 



310 Weissman e t  al. 

Turning now to the problem of finding an approximate form of/~(r, s) 
for s--+ 0 and r ~ 0, we can follow the steps leading to Eq. (20) to find that 

2s =-1 exp(r �9 It/v) r 2 ~1/2 D/4 +2VS~)1/2] 
/~(r, s ) =  ( - 2 ~  ~ (/~2 ~-2vs~] KD/21 [~ (122 

(36) 

Let us note that although Eq. (8) has the correct normalization property, 
approximations to the function #(r,s)  may no longer satisfy 
~ #(r, s) dr = 1/s, in which case it is necessary to use a normalization con- 
dition such as that in Eq. (28). When r/v >> 1 we can expand both term in 
brackets and the Bessel function, retaining only the lowest order terms in 
s. In this way we find the approximation 

exp[(it'r--#r)/v] (~) (l ( )  
/~(r,s)~ s~-Lexp - ~ s  ~ (37) 

It is interesting to observe that the vector tt appears only in a single term 
in this formula, exp(it.r/v), the remaining terms depending only the 
magnitude of the displacement vector r. It is possible to evaluate the inver- 
sion integral by using the method of steepest descents. On comparing the 
approximation for biased random walks in Eq. (37) to that for unbiased 
random walks in Eq. (21), we see that the Laplace transform factor s ~/2 
that appears in the exponent in the latter equation is replaced by an expo- 
nent s = when a nonzero bias exists. Following the analysis given for the 
unbiased random walk, we see that the steepest descents approximation 
will be useful when r > # C .  Provided that this condition holds, the 
approximation to p(r, r) obtained by the method of steepest descents is 
given by 

p(r, r) ~ C(z) r (~ o+~m/tz(l-~}l 

[(it �9 r - /~ r )  ( ~ ) 1 / ( 1 -  =)] 
x exp - al/(~ ~)(c~-1 _ 1) (38) 

12 

where C(r) is a normalization constant dependeing only on ~. 
While it is difficult to examine the structure of/~(r, s) in generality, it 

is useful to consider particular cases for which the Laplace transform in 
Eq. (36) can be inverted in closed form. We therefore consider D = 1 with 
c~ = 1/2. This choice of parameters leads to the expression 

p(x,z)~C(v)exp ( x -  [xJ)-4-- ~ (39) 

where C(z) is a normalization constant, which can be expressed in terms of 
the error function. It is evident from Eq. (39) that the maximum value of 
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p(x, ~) occurs at  x = 0  for all values of r, and,  fur thermore ,  tha t  the 

der ivat ive  with respect  to x at  x = 0  is d iscont inuous .  These indicate  

qual i ta t ive  differences between the case of a finite wai t ing t ime between suc- 
cessive steps and  the present  case. The  pr inc ipa l  difference is tha t  the t ime 
to make  the first s tep away  from the origin domina te s  the qual i ta t ive  
behav io r  of  p(x, r) when the first m o m e n t  of ~ ( t )  is infinite. One  no tab le  
difference between the case of a finite { t )  and  the present  one is that  the 
shape of the peak  is no longer  symmet r ic  a r o u n d  a t ravel ing peak,  but  
ra ther  the symmet ry  of  the peak  is b r o k e n  by an app l i ca t ion  of the field. 
Typica l  curves of p(x, ~) as a funct ion of x are shown in Fig. 1. These 
resemble  curves genera ted  by  Scher and M o n t r o l l  (3) for a r a n d o m  walk on 
a finite lat t ice with per iod ic  b o u n d a r y  condi t ions .  W h e n  ct = 1/2 and  D = 3 
one readi ly  shows from Eq. (36) tha t  ,.2) 

v 4 ~ ~  (40) 

0 .5  

x ~ 
v 
s 

0 .2  

0.1 

i I 

/ 

0 ~ . ]  r I E I J 

- 1  0 1 2 3 4 5 

Fig. 1. Typical plots ofp(x, r) as a function of x for a 1D CTRW in the presence of a biasing 
field. The two curves correspond to different times, (--) r = 10 and (---) r = 20. Notice that 
the maximum of p(x, ~) remains at x=0. In contrast, when ~ z~p(z)& is finite, the peak 
position moves as r increases. 
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C(z) is being found as a normalization factor. While there is now no dis- 
continuity of p(r, z) with respect to r, the qualitative behavior is quite 
similar to that found in D = 1. When the angle between r and [L is equal to 
0 the term e x p [ - ( p r - ~ . r ) / v ]  is equal to 1; at angles other than 0 the 
exponential term is less than 1 since la" r = #r cos 0, where 0 is the angle 
between the vectors r and g. 

3. S Y M M E T R I C  STABLE LAW R A N D O M  W A L K S  
IN ONE D I M E N S I O N  

We consider next symmetric random walks in one dimension in which 
the displacement probabilities have the asymptotic property 

p( j )~ l j l -~  1, 0 < / ~ <  1 (41) 

which implies that all integer moments of order greater than 0 diverge. The 
waiting time density O(t) will be characterized by the property given in 
Eq. (2). It is known that for random walks satisfying the condition in 
Eq. (41) the structure function 2(0) can be expanded in the neighborhood 
of 0 = 0 as 

2(0) ~ 1 - ILOI ~ (42) 

where L is a constant. The large-time limit implies that large distances are 
�9 

significant, allowing us to pass to a continuum limit�9 In this limit the con- 
stant L will have the dimensions of length, but we can set L = 1 provided 
that we work in terms of dimensionless distances measured in units of L. 
Similarly, we will use the dimensionless distances measured in units of L. 
Similarly, we will use the dimensionless time z introduced earlier, in which 
case we can set T =  1. Rather than retaining the lattice structure, we will 
allow the line to be a continuum, denoting the dimensionless distance by 
the variable y = x/L. 

Let us first calculate the asymptotic form of p(0, z). We will show that 
the behavior of this function takes a different form depending on whether 
fl < 1 or fl > 1. To see this, let us return to the fundamental representation 
given in Eq. (8) for D = 1. Consider first f l<  1, in which case setting y = 0  
leads to the approximation 

s~ - l f ~ dO /~(0, s ) =  (43) 
rc s ~ + 1 - 2(0) 

We first calculate the exponent that characterizes the asymptotic falloff in 
time of the probability p(0, r). Equation (43) indicates that different 
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behavior is to be expected depending on w h e t h e r / / <  1, = 1, or > 1, since 
in the first case the integral converges when s is set equal to 0, while in the 
latter two cases it will diverge because of the singularity at 0 = 0. When 
fl < 1 we find 

s'~- ~ fo dO s ~ ~ fo dO .6(0, s ) ~  (44) 
1 -- ~(0) ~r 0-~ 

Since the last integral on the right-hand side converges, the small-s 
behavior in Eq. (44) implies that large r: 

p(0, ~) ~ Kr -~ (45) 

where the coefficient K is 

K ~zr(1 -c~) 1 --2-(0) (46) 

The asymptotic expression for p(0, r) in Eq. (45) indicates that the 
controlling factor in the determination of the behavior of p(0, ~) for large 

is the initial sojourn at the origin. When/3 > 1 we cannot simply set s = 0 
in Eq. (43) because the integral on the right-hand side of Eq. (44) diverges. 
In this case we consider the evaluation of Eq. (43) in the limit s--* 0 by 
setting 1 - 2(0) ~ 0 r in the integrand, thereby finding, as an approximation, 

,6(0, s ) ~  (47) 
Jo s~ + O ~ 

On changing the variable of integration to v, where 0 = s ~/~, we find that 
in the limit s ~ 0, 

p(O,s) ~--s~/a-lj dv (48) 
o v ~ + l  

which indicates that 

p(0,  ~) csc(n//~) v ~/~ (49) 
/~r( 1 -- c~//~) 

When fl = 1 we find, starting from Eq. (47), that p(0, s) ~ a(s ~- 1/~) ln(1/s), 
which is equivalent to the asymptotic result 

In z 
p(0, ~) (50) 

TcF(1 - ~) ~ 
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An expansion for p(y, r) around y = 0 can be found similar in form to 
that given in Eq. (17). The details of the derivation are quite similar to 
those used in finding that equation; hence, we only present the final result: 

1 co 1) n+l y2. 
p(y,z)~p(O,z) F(1-c~) r~n~o  ( - =  In(2n)---~. (51) 

in which the In are just the constants given in Eq. (18). This result is valid 
independent of the value of ft. 

Let us next examine the asymptotic form of/~(y, s) for general values 
ofy.  To do so, we will exponentiate the denominator of Eq. (8) in the one- 
dimensional case, finding, as a result, the integral representation 

/~(y, s) = e -~'~ d~ cos(yO) e ~[1 ;.(0)] dO (52) 
7"C 

i.e.,/~(y, s) is proportional to the Laplace transform of the function 

f; g({) = cos(yO) e -~E1 ;.(0)1 dO (53) 

Our interest in the value of/~(y, s) for small s requires that we find the 
behavior of g(~) for large 4. In this limit the major contribution to g(~) will 
come from the neighborhood of 0 = 0. Hence we may replace Eq. (53) by 

g(~) ~ f o  cos(yO) e J dO (54) 

in which case, using an appropriate change of the variables of integration, 
we can rewrite Eq. (52) as the Laplace transform 

p(y,s)~s ~ 1 l i e  ~'~ -~ -  Q~(y~-l/~) d~ (55) 

where Q~(x) is the tabulated integral (18) 

Q~(x)~-l ~ e U~cos(xu) du (56) 

Several asymptotic properties ofp(y ,  r) can be found from the integral 
representation given in the last line of Eq. (56), since the properties of 
Qe(x) are known. Let us consider the form of/~(y, s) for large y. When 
fl < 1 the function Qe(x) can be represented by the convergent series 

QI3(X) 7[ n = 1 / '7!  X 1 + n ~  s i n  (57) 
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On substituting this series into Eq. (55), interchanging the order of summa- 
tion and integration, and performing the integration over ~, we find 

:(y', s) ~ -  ( - 1 )  "+ '  r (1  +ni l )  sin y~+~/3s~+n~ 
TCn= 1 

When we invert the transform term by term we find 

~,,=1 F(I  +n~)  sm y1+,;3 (59) 

When /3>1 the series in Eq. (58) is asymptotically convergent and can 
therefore also be used for that regime. The series in Eq. (59) can only be 
regarded as being convergent in an asymptotic sense in the limit y~/z ~ --. oc. 
In contrast to the case of small y, the expansion given in this last equation 
does not depend on the value of ft. 

It is possible to calculate the asymptotic behavior of the expected 
number of distinct sites visited by a random walker in time t, ( S ( t ) ) ,  for 
the cases treated here. The analysis follows that given in ref. 1, making use 
of the generating function for the expected number of distinct sites visited 
by a random walker in discrete time ( S , ) ,  S ( z ) = z / I ( 1 - - Z )  2 P(0; z)]~ It 
has been shown (1/ that the Laplace transform of ( S ( t ) )  is just equal to 
S((J(s)), which implies, using Tauberian methods, that for large t 

S ( t )  ~ t ~, ~ < 1 

t ~/~, 1 < fl < 2 (60) 

where we have omitted multiplicative constants. The transition in the 
exponent indicated in this last equation is clearly due to the fact that for 
small/3 the random walk essentially samples a new site on every step. 

4. D I S C U S S I O N  

The CTRW has often been used as a model to approximate the 
parameters characterizing transport in a disordered medium. (2,3,9,~9) The 
weak point in all such analyses has been the lack of a rigorous derivation 
of the form of the waiting time density 0(t)  as well as a decision on 
whether one or more waiting time densities are needed to describe the 
transport properties of a given disordered system. (2~ Some work on the 
derivation of an asymptotic form for this function for one-dimensional 
systems ~9'21) suggests that if the CTRW description of transport is a valid 
one and a single 0(t)  can be used to characterize transport in a disordered 
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medium, it indeed has the property specified in Eq. (2). However, there is 
as yet no consensus in the literature on this subject as to when the CTRW 
description may be considered to be a useful one. It is possible, using the 
methods of this paper, to analyze properties of CTRWs with waiting-time 
densities having the asymptotic form 

1 
~p(t) t[ ln(t /T)]~+ ~ (61) 

but these do not have a sufficient physical basis to warrant present study. 
The CTRW has been suggested by a number of authors as a model for 

transport in a disordered medium. (2'3'9'11'12'19) Although the CTRW lacks 
the important feature of accounting for memory correctly, it has been 
shown (9'2~ that by using a self-consistent equation for O(t) one can derive 
a formula for asymptotic properties of transport dynamics. The principal 
result of the analysis yields the exponent of p(r, t) in the form 

lnl-p(r, t)] ~ - A  \ tl/aw j (62) 

where A is a constant. This expression agrees with a rigorous result for a 
one-dimensional system found by Stephens and Kariotis. (21) Equation (62) 
is in agreement with numerical data and scaling theories for diffusion on a 
variety of fractals exemplified by percolation clusters and the Sierpinsky 
gasket. (22) 
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